2 natural nuclides and 8 artificial radiosotopes as well as 2 nuclear isomers are known from the alkali metal lithium.
Natural lithium deposits consist of the isotopes 6Li with 1.9 to 7.8% and 7Li with 92.2 to 98.1%; This results in a relative atomic mass for terrestrial lithium of 6.94 u on average or an interval of 6.938 to 6.997 u.
Lithium-6 is found e.g. Used in tritium production and as a neutron absorber and is obtained from natural lithium by isopen fractionation; this means that commercially available lithium and lithium compounds can have several percent less 6Li.
Atomic Mass ma | Quantity | Half-life | Spin | |
Lithium Isotopic mixture | 6,94 u | 100 % | ||
Isotope 6Li | 6,015122887(9) u | 4,85 % | stable | 1+ |
Isotope 7Li | 7,01600344(3) u | 95,15 % | stable | 3/2- |
Isotope Nuclide | E | N | Atomic Mass [Nuclear Mass] {Mass Excess} | Spin I (h/2π) | Parent |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
Lithium-3 | 33Li | 0 | 3.03078(215) u [3.0291343 u] {28.67139 MeV} | (3/2-) | |
Lithium-4 | 43Li | 1 | 4.02719(23) u [4.0255443 u] {25.32732 MeV} | 2- | 5Be |
Lithium-5 | 53Li | 2 | 5.01254(5) u [5.0108943 u] {11.68093 MeV} | 3/2- | 9C |
Lithium-6 | 63Li | 3 | 6.015122887(9) u [6.0134771 u] {14.08688 MeV} | 1+ | 6He |
Lithium-7 | 73Li | 4 | 7.01600344(3) u [7.0143577 u] {14.90711 MeV} | 3/2- | 11Be 7Be |
Lithium-8 | 83Li | 5 | 8.02248624(5) u [8.0208405 u] {20.9458 MeV} | 2+ | 8He |
Lithium-9 | 93Li | 6 | 9.02679019(20) u [9.0251445 u] {24.9549 MeV} | 3/2- | |
Lithium-10 | 103Li | 7 | 10.035483(14) u [10.0338373 u] {33.0522 MeV} | (1-,2-) | |
Lithium-11 | 113Li | 8 | 11.0437236(7) u [11.0420779 u] {40.72827 MeV} | 3/2- | |
Lithium-12 | 123Li | 9 | 12.05261(3) u [12.0509643 u] {49.0059 MeV} | (1-,2-) | |
Lithium-13 | 133Li | 10 | 13.06117(8) u [13.0595243 u] {56.97949 MeV} | 3/2- |
Isotope | Radioactive Decay | Extern | |||
---|---|---|---|---|---|
Half-life | Decay Mode | Probability | Energy | ||
7 | 8 | 9 | 10 | 11 | 12 |
Li-3 | p → 2He | ? | |||
Li-4 | 91(9) × 10-24 s | p → 3He | 100 % | 22.90(21) MeV | AL |
Li-5 | 370(3) × 10-24 s | p → 4He | ? | 26.3 MeV | AL |
Li-6 | stable | AL | |||
Li-7 | stable | AL | |||
Li-8 | 839.9(9) ms | β- → 8Be β-, α → 4He | 16.00413(6) MeV | AL | |
Li-9 | 178.3(4) ms | β- → 9Be β-, n → 8Be | 49.2 % 50.8 % | 13.60645(20) MeV 11.94192(19) MeV | AL |
Li-10 | 2.0(5) zs | n → 9Li | 100 % | AL | |
Li-11 | 8.75(14) ms | β- → 11Be β-, n → 10Be | 100 % | 20.5511(7) MeV 20.0495(6) MeV | AL |
Li-12 | < 10 ns | n → 11Li | 20.761(30) MeV | AL | |
Li-13 | 3.3 zs | 2n → 11Li | ? |
Notes (related to the columns):
1 - name of the nuclide, isotope.
2 - E: isotope symbol with mass number (superscript; number of nucleons) and Atomic number (subscript; number of protons).
3 - N: number of neutrons.
4 - relative atomic mass of the Lithium isotope (isotopic mass including electrons) and the mass of the atomic nucleus in square brackets (nuclear mass, nuclide mass without electrons), each related to 12C = 12.00000 [2]. In addition, the mass excess is given in MeV.
5 - nuclear spin I, unit: h/2π.
6 - source nuclides: Possible, assumed or actual source nuclides (mother nuclides, parent nuclides). If applicable, the corresponding decay modes can be found in the data for the respective starting nuclide.
7 - isotope notation in short form.
8 - decay: half-live of the Lithium isotope (a = years; ; d = days; h = hours; min = minutes; s = seconds).
9 - decay mode: type of decay into the respective daughter nuclides with n = neutron emission; p = proton emission; α = alpha decay; β- = beta minus decay with electron emission; EC = electron capture; β+ = positron emission; ε = β+ and/or EC; Iso = isomeric transition; CD = cluster decay; SF = spontaneous decay.
10 - decay probability in percent (%).
11 - decay energy; Particle energy related to decay type.
12 - other information and notes: AL = Adopted Levels (link to external data [1]).
Miscellaneous:
()- Numbers in brackets: uncertainty to represent the spread of the reported value.
~ - Theoretical values or systematic trends.
- unlisted-: Nuclides that have already been mentioned in the literature but for some reason can no longer be found in the current nuclide tables because their discovery e.g. has not confirmed.
Nuclide quantity 1) spin | Nuclear magnetic moment μ/μN | Gyromagnetic ratio {Quadrupole moment} | Resonant frequency v0 bei 1 T | Relative sensitivity H0 = const. v0 = const. 3) |
---|---|---|---|---|
6Li 4,85 % 1+ | +0,822043(3) | 3,9371 {-0,000806(6)} | 6,2661 | 0,00850 0,3925 |
7Li 95,15 % 3/2- | +3,256407(12) | 10,3976 {-0,0400(3)} | 16,5483 | 0,29356 1,9434 |
8Li 2+ | +1,65350(2) | 3,9597953 {+0,0314(2)} |
1) Quantity Percentage of natural occurrence.
2) Gyromagnetic ratio: 107 rad T-1 s-1
Quadrupole moment: Q [barn] = [100 fm2]
3) Related to 1H = 1,000.
Properties of the Lithium nucleides
[1] - NuDat: National Nuclear Data Center, Brookhaven National Laboratory, based on ENSDF and the Nuclear Wallet Cards.
[2] - G. Audi et. al.: The NUBASE evaluation of nuclear and decay properties. Nuclear Physics, (2003), DOI 10.1016/j.nuclphysa.2003.11.001.
[3] - Live Chart of Nuclides. Nuclear structure and decay data.
Lithium: NMR properties - 6Li-NMR, 7Li-NMR, 8Li-NMR
[4] - N. J. Stone: Table of nuclear magnetic dipole and electric quadrupole moments. Atomic Data and Nuclear Data Tables, (2005), DOI 10.1016/j.adt.2005.04.001.
[5] - Pekka Pyykkö: Year-2008 nuclear quadrupole moments. Molecular Physics, (2008), DOI 10.1080/00268970802018367.
[6] - Pekka Pyykkö: Year-2017 nuclear quadrupole moments. Molecular Physics, (2018), DOI 10.1080/00268976.2018.1426131.
[7] - N. J. Stone: Table of recommended nuclear magnetic dipole moments. IAEA, (2019).
More sources:
[8] - Isotopic abundances, atomic weights and isotopic masses: see respective keyword.
Last update: 2022-12-22
Perma link: https://www.chemlin.org/chemical-elements/lithium-isotopes.php
© 1996 - 2024 ChemLin