About   |   More   |   Search
ChemLin Logo

Isotopes of Tellurium

List, data and properties of all known isotopes of Tellurium.


Content

Tellurium isotopes

All atomic nuclei of the chemical element tellurium are summarized under tellurium isotopes; these all consist of an atomic nucleus with 52 protons and, in the uncharged state, 52 electrons. The difference between each tellurium isotope is based on the number of neutrons in the nucleus.

 

Naturally Occurring Tellurium Isotopes

Natural terrestrial deposits of tellurium are composed of eight isotopes, five of which are considered to be stable and three of which decay with very long half-lives, releasing mild radioactive radiation. The two tellurium isotopes Te-128 and Te-130, which decay under double electron capture, provide the largest proportion at 32 and 34% above that of the heavier element iodine (126.90 u).

There are no technical applications for the individual telluride isotopes.

Atomic Mass maQuantityHalf-lifeSpin
Tellurium
Isotopic mixture
127,60 u100 %
Isotope 120Te119,90406(2) u0,09(1) %stable0+
Isotope 122Te121,90304(1) u2,55(12) %stable0+
Isotope 123Te122,90427(1) u0,89(3) %9.2 × 1016 a1/2+
Isotope 124Te123,90282(1) u4,74(14) %stable0+
Isotope 125Te124,9044312(15) u7,07(15) %stable1/2+
Isotope 126Te125,90331(1) u18,84(25) %stable0+
Isotope 128Te127,904461(6) u31,74(8) %7.7(4) × 1024 a0+
Isotope 130Te129,90622275(8) u34,08(62) %0.79 × 1021 a0+

 

In addition to the natural Te isotopes, about 30 other unstable radionuclides of tellurium and several nuclear isomers are known.

 

Isotope Table: Tellurium

The two following tables list the most important data and properties of the Tellurium isotopes. Further information on the individual Tellurium isotopes is listed on separate pages and can be accessed via the link in column 1.

 

Atomic Properties

Isotope
Nuclide
ENAtomic Mass
[Nuclear Mass]
{Mass Excess}
Spin I
(h/2π)
Parent
123456
Tellurium-10510552Te53104.94330(32) u
[104.9147756 u]
{-52.81571 MeV}
(5/2+)
Tellurium-10610652Te54105.93750(11) u
[105.9089756 u]
{-58.21838 MeV}
0+110Xe
Tellurium-10710752Te55106.93501(8) u
[106.9064856 u]
{-60.5378 MeV}
111Xe
Tellurium-10810852Te56107.92938(6) u
[107.9008556 u]
{-65.78211 MeV}
0+112Xe
Tellurium-10910952Te57108.927305(5) u
[108.8987806 u]
{-67.71496 MeV}
(5/2+)113Xe
Tellurium-11011052Te58109.922458(7) u
[109.8939336 u]
{-72.22991 MeV}
0+
Tellurium-11111152Te59110.921001(7) u
[110.8924766 u]
{-73.58709 MeV}
(5/2)+
Tellurium-11211252Te60111.916728(9) u
[111.8882036 u]
{-77.56737 MeV}
0+112I
Tellurium-11311352Te61112.91589(3) u
[112.8873656 u]
{-78.34796 MeV}
(7/2+)113I
Tellurium-11411452Te62113.91209(3) u
[113.8835656 u]
{-81.88764 MeV}
0+114I
Tellurium-11511552Te63114.91190(3) u
[114.8833756 u]
{-82.06462 MeV}
7/2+115I
Tellurium-115m115m52Te63114.91190(3) u
[114.8833756 u]
{-82.06462 MeV}
(1/2)+
Tellurium-11611652Te64115.90846(3) u
[115.8799356 u]
{-85.26896 MeV}
0+116I
Tellurium-11711752Te65116.908646(14) u
[116.8801216 u]
{-85.0957 MeV}
1/2+117I
Tellurium-117m117m52Te65116.908646(14) u
[116.8801216 u]
{-85.0957 MeV}
(11/2-)
Tellurium-11811852Te66117.905854(20) u
[117.8773296 u]
{-87.69643 MeV}
0+118I
Tellurium-11911952Te67118.906407(9) u
[118.8778826 u]
{-87.18132 MeV}
1/2+
Tellurium-119m119m52Te67118.906407(9) u
[118.8778826 u]
{-87.18132 MeV}
11/2-
Tellurium-12012052Te68119.90406(2) u
[119.8755356 u]
{-89.36753 MeV}
0+120I
Tellurium-12112152Te69120.904945(28) u
[120.8764206 u]
{-88.54316 MeV}
1/2+121I
Tellurium-121m121m52Te69120.904945(28) u
[120.8764206 u]
{-88.54316 MeV}
11/2-
Tellurium-12212252Te70121.90304(1) u
[121.8745156 u]
{-90.31766 MeV}
0+
Tellurium-12312352Te71122.90427(1) u
[122.8757456 u]
{-89.17192 MeV}
1/2+123I
Tellurium-123m123m52Te71122.90427(1) u
[122.8757456 u]
{-89.17192 MeV}
11/2-
Tellurium-12412452Te72123.90282(1) u
[123.8742956 u]
{-90.52259 MeV}
0+124I
124Sb
Tellurium-12512552Te73124.9044312(15) u
[124.8759068 u]
{-89.02176 MeV}
1/2+125I
125Sb
Tellurium-125m125m52Te73124.9044312(15) u
[124.8759068 u]
{-89.02176 MeV}
11/2-
Tellurium-12612652Te74125.90331(1) u
[125.8747856 u]
{-90.06615 MeV}
0+126I
126Sb
Tellurium-12712752Te75126.9052257(16) u
[126.8767013 u]
{-88.28169 MeV}
3/2+127Sb
Tellurium-127m127m52Te75126.9052257(16) u
[126.8767013 u]
{-88.28169 MeV}
11/2-
Tellurium-12812852Te76127.904461(6) u
[127.8759366 u]
{-88.99401 MeV}
0+128Sb
128I
Tellurium-12912952Te77128.9065965(9) u
[128.8780721 u]
{-87.0048 MeV}
3/2+129Sb
Tellurium-129m129m52Te77128.9065965(9) u
[128.8780721 u]
{-87.0048 MeV}
11/2-
Tellurium-13013052Te78129.90622275(8) u
[129.8776984 u]
{-87.35295 MeV}
0+130Sb
Tellurium-13113152Te79130.90852221(6) u
[130.8799978 u]
{-85.21101 MeV}
3/2+131Sb
Tellurium-131m131m52Te79130.90852221(6) u
[130.8799978 u]
{-85.21101 MeV}
11/2-
Tellurium-131m2131m252Te79130.90852221(6) u
[130.8799978 u]
{-85.21101 MeV}
(23/2+)
Tellurium-131m+131m+52Te79
Tellurium-13213252Te80131.908547(4) u
[131.8800226 u]
{-85.18792 MeV}
0+132Sb
252Cf
Tellurium-13313352Te81132.9109633(22) u
[132.8824389 u]
{-82.93715 MeV}
(3/2+)133Sb
Tellurium-133m133m52Te81132.9109633(22) u
[132.8824389 u]
{-82.93715 MeV}
(11/2-)
Tellurium-133m+133m+52Te81
Tellurium-13413452Te82133.9113964(29) u
[133.882872 u]
{-82.53372 MeV}
0+134Sb
235Sb
248Cm
Tellurium-13513552Te83134.9165547(18) u
[134.8880303 u]
{-77.7288 MeV}
(7/2-)135Sb
136Sb
248Cm
252Cf
Tellurium-13613652Te84135.9201012(24) u
[135.8915768 u]
{-74.42525 MeV}
0+136Sb
248Cm
252Cf
Tellurium-13713752Te85136.9255994(23) u
[136.897075 u]
{-69.30371 MeV}
(7/2-)248Cm
Tellurium-13813852Te86137.929472(4) u
[137.9009476 u]
{-65.69641 MeV}
0+248Cm
Tellurium-13913952Te87138.935367(4) u
[138.9068426 u]
{-60.20525 MeV}
(7/2-)248Cm
Tellurium-14014052Te88139.93926(7) u
[139.9107356 u]
{-56.57895 MeV}
0+
Tellurium-14114152Te89
Tellurium-14214252Te90141.95022(54) u
[141.9216956 u]
{-46.36977 MeV}
0+
Tellurium-14314352Te91142.95676(54) u
[142.9282356 u]
{-40.2778 MeV}

 

Radioactive Decay Properties

IsotopeRadioactive DecayExtern
Half-lifeDecay ModeProbabilityEnergy
789101112
Te-1050.62(7) μsα → 101Snca. 100 %5.069(3) MeVAL
Te-10670(17) μsα → 102Sn100 %4.290(9) MeVAL
Te-1073.1(1) msα → 103Sn
EC/β+107Sb
70(30) %
30(30) %
4.008(5) MeV
10.11(7) MeV
AL
Te-1082.1(1) sα → 104Sn
EC/β+108Sb
β+, p → 107Sb
49(9) %
51(4) %
2.4(10) %
3.420(8) MeV
6.664(8)
AL
Te-1094.4(2) sα → 105Sn
EC/β+109Sb
β+, p → 108Sb
β+, α → 105In
3.9(13) %
96.1(13) %
9.4(31) %
< 0.005 %
3.198(6) MeV
8.536(7) MeV

AL
Te-11018.6(8) sEC/β+110Sb
α → 106Sn
ca. 100 %
0.00067 %
5.220(9) MeV
2.699(8) MeV
AL
Te-11119.3(4) sEC/β+111Sb
β+, p → 110Sb
100 %
?
7.249(11) MeV
AL
Te-1122.0(2) minEC/β+112Sb100 %4.031(20) MeVAL
Te-1131.7(2) minEC/β+113Sb100 %6.07(3) MeVAL
Te-11415.2(7) minEC/β+114Sb100 %2.61(4) MeVAL
Te-1155.8(2) minEC/β+115Sb100 %4.94(3) MeVAL
Te-115m6.7(4) minEC/β+115Sb
Iso → 115Te
< 100 %
?

Te-1162.49(4) hEC/β+116Sb100 %1.553(28) MeVAL
Te-11762(2) minEC/β+117Sb
β+117Sb
75 %
25(1) %
3.544(16) MeV
?
AL
Te-117m103(3) msIso → 117Te100 %
Te-1186.00(2) dEC → 118Sb100 %0.300(19) MeVAL
Te-11916.05(5) hEC/β+119Sb
β+119Sb
97.04 %
2.06 %
2.293(11) MeV
?
AL
Te-119m4.70(4) dEC/β+119Sb
β+119Sb
Iso → 119Te
> 99 %
0.41(4) %
< 0.008 %


Te-120stableAL
Te-12119.17(4) dEC/β+121Sb100 %1.056(26) MeVAL
Te-121m164.2(8) dEC/β+121Sb
Iso → 121Te
11.4(11) %
88.6(11) %

Te-122stableAL
Te-1239.2 × 1016 aEC → 123Sb100 %0.0519(21) MeVAL
Te-123m119.2(1) dIso → 123Te100 %
Te-124stableAL
Te-125stableAL
Te-125m57.40(15) dIso → 125Te100 %
Te-126stableAL
Te-1279.35(7) hβ-127I100 %0.702(4) MeVAL
Te-127m106.1(7) dβ-127I
Iso → 127Te
2.4(2) %
97.6(2) %

Te-1287.7(4) × 1024 a2 β-128Xe100 %AL
Te-12969.6(3) minβ-129I100 %1.502(3) MeVAL
Te-129m33.6(1) dβ-129I
Iso → 129Te
36(7) %
64(7) %

Te-1300.79 × 1021 a2 β-130Xe100 %AL
Te-13125.0(1) minβ-131I100 %22.317(6) MeVAL
Te-131m33.25(25) hβ-131I
Iso → 131Te
74.1(5) %
25.9(5) %

Te-131m293(12) msIso → 131Te100 %
Te-131m+
Te-1323.204(13) dβ-132I100 %0.515(3) MeVAL
Te-13312.5(3) minβ-133I100 %2.921(7) MeVAL
Te-133m55.4(4) minβ-133I
Iso → 133Te
83.5(20) %
16.5(20) %

Te-133m+
Te-13441.8(8) minβ-134I100 %1.510(5) MeVAL
Te-13519.0(2) sβ-135I100 %6.0504(27) MeVAL
Te-13617.63(8) sβ-136I
β-, n → 135I
98.69 %
1.31 %
5.120(14) MeV
1.283(3) MeV
AL
Te-1372.49(5) sβ-137I
β-, n → 136I
97.01 %
2.99 %
7.053(9) MeV
2.170(14) MeV
AL
Te-1381.4(4) sβ-138I
β-, n → 137I
93.7 %
6.3 %
6.284(7) MeV
2.589(9) MeV
AL
Te-1391.6(3) sβ-129I
β-, n → 128I
100 %
?
8.266(5) MeV
3.704(7) MeV
AL
Te-140β-140I
β-, n → 139I
100 %
?
7.03(6) MeV
3.82(6) MeV
AL
Te-141- ungelistet -AL
Te-142AL
Te-143408 nsβ-143I
β-, n → 142I
β-, 2n → 141I
?
?
?
10.35(54) MeV
6.42(63) MeV
AL

 

Notes (related to the columns):

1 - name of the nuclide, isotope.
2 - E: isotope symbol with mass number (superscript; number of nucleons) and Atomic number (subscript; number of protons).
3 - N: number of neutrons.
4 - relative atomic mass of the Tellurium isotope (isotopic mass including electrons) and the mass of the atomic nucleus in square brackets (nuclear mass, nuclide mass without electrons), each related to 12C = 12.00000 [2]. In addition, the mass excess is given in MeV.
5 - nuclear spin I, unit: h/2π.
6 - source nuclides: Possible, assumed or actual source nuclides (mother nuclides, parent nuclides). If applicable, the corresponding decay modes can be found in the data for the respective starting nuclide.

7 - isotope notation in short form.
8 - decay: half-live of the Tellurium isotope (a = years; ; d = days; h = hours; min = minutes; s = seconds).
9 - decay mode: type of decay into the respective daughter nuclides with n = neutron emission; p = proton emission; α = alpha decay; β- = beta minus decay with electron emission; EC = electron capture; β+ = positron emission; ε = β+ and/or EC; Iso = isomeric transition; CD = cluster decay; SF = spontaneous decay.
10 - decay probability in percent (%).
11 - decay energy; Particle energy related to decay type.
12 - other information and notes: AL = Adopted Levels (link to external data [1]).

Miscellaneous:

()- Numbers in brackets: uncertainty to represent the spread of the reported value.
~ - Theoretical values or systematic trends.
  - unlisted-: Nuclides that have already been mentioned in the literature but for some reason can no longer be found in the current nuclide tables because their discovery e.g. has not confirmed.

 

NMR active Tellurium nuclides

Nuclide
quantity 1)
spin
Nuclear
magnetic
moment
μ/μN
Gyromagnetic ratio
{Quadrupole moment}
Resonant
frequency
v0 bei 1 T
Relative
sensitivity
H0 = const.
v0 = const. 3)
123Te
0,89(3) %
1/2+
-0,7358(3)7,0576
{}
11,23490,01837
0,2639
125Te
7,07(15) %
1/2+
-0,8885051(4)8,5087
{}
13,54460,03219
0,3181

1) Quantity Percentage of natural occurrence.

2) Gyromagnetic ratio: 107 rad T-1 s-1
    Quadrupole moment: Q [barn] = [100 fm2]

3) Related to 1H = 1,000.

 

Radiation Protection

According to the Radiation Protection Ordinance (StrlSchV 2018, Germany), the following values (columns 1 to 7) apply to the handling of Tellurium radionuclides:

NuclideLimit ValueHASS limitSCDaughter NuclidesHalf-life
Te-116+107 Bq100 Bq/g2.5 h
Te-121106 Bq10 Bq/g0,1 TBq19.2 d
Te-121m106 Bq1 Bq/g0,1 TBq154.0 d
Te-123106 Bq0,1 Bq/g> 9.2 × 1016 a
Te-123m107 Bq100 Bq/g8 × 1010 Bq10 Bq/cm2119.7 d
Te-125m107 Bq1000 Bq/g10 TBq100 Bq cm-257.4 d
Te-127106 Bq1000 Bq/g10 TBq100 Bq cm-29.4 h
Te-127m+107 Bq10 Bq/g3 TBq100 Bq cm-2Te-127109.0 d
Te-129106 Bq100 Bq/g1 TBq10 Bq cm-269.6 min
Te-129m+106 Bq10 Bq/g1 TBq10 Bq cm-2Te-12933.6 d
Te-131105 Bq100 Bq/g10 Bq cm-225.0 min
Te-131m+106 Bq10 Bq/g0,04 TBq1 Bq cm-230.0 h
Te-132107 Bq100 Bq/g5 × 109 Bq1 Bq/cm276.3 h
Te-133105 Bq10 Bq/g1 Bq cm-212.5 min
Te-133m+105 Bq10 Bq/g1 Bq cm-255.4 min
Te-134106 Bq10 Bq/g1 Bq cm-241.8 min

(HASS = High-Activity Sealed Radioactive Sources; SC = surface contamination)

 

Literature Sources and References

Properties of the Tellurium nucleides

[1] - NuDat: National Nuclear Data Center, Brookhaven National Laboratory, based on ENSDF and the Nuclear Wallet Cards.

[2] - G. Audi et. al.: The NUBASE evaluation of nuclear and decay properties. Nuclear Physics, (2003), DOI 10.1016/j.nuclphysa.2003.11.001.

[3] - Live Chart of Nuclides. Nuclear structure and decay data.

Tellurium: NMR properties - 123Te-NMR, 125Te-NMR

[4] - N. J. Stone: Table of nuclear magnetic dipole and electric quadrupole moments. Atomic Data and Nuclear Data Tables, (2005), DOI 10.1016/j.adt.2005.04.001.

[5] - Pekka Pyykkö: Year-2008 nuclear quadrupole moments. Molecular Physics, (2008), DOI 10.1080/00268970802018367.

[6] - Pekka Pyykkö: Year-2017 nuclear quadrupole moments. Molecular Physics, (2018), DOI 10.1080/00268976.2018.1426131.

[7] - N. J. Stone: Table of recommended nuclear magnetic dipole moments. IAEA, (2019).

More sources:

[8] - Isotopic abundances, atomic weights and isotopic masses: see respective keyword.

[9] - A. Alessandrello et al.:
New limits on naturally occurring electron capture of 123Te.
In: Physical Review C, (2003), DOI 10.1103/PhysRevC.67.014323.

[10] - J. Kathawa, C. Fry, M. Thoennessen:
Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes.
In: Atomic Data and Nuclear Data Tables, (2013), DOI 10.1016/j.adt.2012.01.004.

 


More Chemistry

isotopes

Social Media

Facebook

LinkedIn

Twitter


Last update: 2022-12-12


© 1996 - 2024 ChemLin